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1. Introduction

Laser inspection of solder connections is a state-of-the-art technology
that determines the acceptability of a soldered connection by compar-
ing the thermal signature (the heat-up and cool-down curves) of the
connection with the thermal signature of a known good connection.
The theory is that a defect in the connection, such as a detached lead,
will alter the connection's thermal properties so that its thermal
signature will be identifiably different from that of the good connec-
tion. Thermal signatures are acquired by irradiating the connection
with a laser for a given period of time while monitoring the heat
radiated from the object with an infrared detector.

The Department of Defense (DoD) is interested in this technology
because of its possible application to the assessment of certain key
properties of leads and connections, such as solderability, surface
cleanliness, and bulk volume. The rate per unit area at which energy
is radiated from an object is determined by only two basic variables:
emissivity and surface temperature. However, these two variables
depend on several other factors. The emissivity is primarily depend-
ent on the material being considered and its surface condition, while
the surface temperature depends on heat-transfer conditions, such as
input energy, object volume, and thermal properties of the material.
DoD believes that it may be possible to characterize the shape of the
thermal signatures, thus allowing for the isolation of anomalies in
certain of the properties just discussed. If this is the case, this technol-
ogy could be used in a variety of areas of concern in electronics process
control.

Since the radiant heat measured by the machine depends on the input
energy from the heating source, the accuracy of the measurements
would be suspect if the stability of the heating source output was in
question. The possibility of error introduced by the heating source
began to be considered when it was noted that the power output of the
laser currently used in this technology has shown substantial modu-
lation during the heating phase (see fig. 1).

Two possibilities for error are apparent. First, the sinusoidal-type
modulation may have some transient effect on the temperature at the
surface, where the infrared emission is measured. Second, severe
fluctuations might give a net power input increase or decrease,
producing some unknown deviation in the infrared emission meas-
ured. Both possibilities were analyzed using finite-element analysis,
the second in two parts to account for both an increase and a decrease.

The first case was modeled by producing , sinusoidal input abont a
mean value, and the other two cases were modeled by producing flat
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inputs 10 percent above and below the same mean value. The resulting
infrared emissions were then compared to those produced when the
mean value is used as an input. The purpose of this analysis is not to
give exact results, but to provide information on trends in percentage
of error of the IR radiation readings caused by power variations of
these types.

Figure 1. Typical
power versus time L
plot of laser output. IS,

FD

Q)

0
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5. m, .,21 m __

Time

2. Machine Description

The Vanzetti LI/6000 Laser/Inspect is an instrument which employs
the technology described previously. The machine inspects objects in
a closed environment at room temperature. The heat source is a 30-W
yttrium aluminum garnet (YAG) laser emitting in the infrared at a
1.06-im wavelength. The laser delivers a maximum of 18 to 22 W of
useful energy to the surface of the object, after transmission through
the machine's optic system. However, the laser power is adjustable,
and a setting of 16 W of delivered power is standard for solder joint
assessment. The power absorbed by the object, which is somewhat less
than this, is determined by the absorptance of the material. The laser
is focused onto a spot 0.43 mm in diameter and typically held for
between 10 and 100 ms, depending on the volume and type of
specimens under investigation. The infrared emission produced by
the object is measured with an InSb photovoltaic infrared detector.
The area from which the infrared emission is gathered is the same as
that which is irradiated by the laser.
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3. Analysis Procedure

The sample object analyzed in this report is the solder cylinder formed
in a plated-through-hole connection. This study neglects the possible
effects of a lead, the component heat sink, the copper plating, etc, so
that the general effect of fluctuations in input power is more readily
apparent without complicating the heat flow. It is assumed that the
percentage of deviation in infrared emissions from this simple case
will be indicative of the kinds of deviations that might be found in
more complicated cases.

Finite-element analysis was used to perform the heat-transfer analy-
sis. The solder sample was modeled as a cylinder 1.95 mm deep with
a diameter of 1 mm. The sides of the cylinder were modeled as fully
insulated, since the boundary is epoxy; the top and bottom, being
exposed to the environment, were given radiative boundary condi-
tions. The inspection chamber was closed to outside airflow, so that
loss by convectiveheat transfer was due only to natural convection.
Film coefficients, h, for the top and bottom of the cylinder were found
to be 19.16 and 9.58 Wm-2K-', respectively, by applying the following
equation:

h = (1)
L'

where N, is the mean Nusselt number, K is the thermal conductivity,
and L is the characteristic length.' The initial temperature of the solder
and the ambient temperature of the environment were given as room
temperature, 298 K. The ambient temperature was made to remain
constant during the analysis, assuming the environment to be infinite
compared to the sample size. Properties of the solder were as follows:Z3

emissivity, e, = 0.057,
density, p, = 8500 kgm',

thermal conductivity, K, = 50 jm-2s-K-1,
specific heat, C, = 176 Jkg-'K-',
absorptivity, a, = 0.107.

Four load cases were analyzed, shown in figure 2. A value of 1.712 W
was chosen to be the normal power input, found by multiplying 16 W
by the absorptivity. The sinusoidal input was given a peak-to-peak
variation of 20 percent from the normal power value and a frequency

'L. C. Thomas, Fundamentals of Heat Transfer, Prentice-Hall, Inc., Englewood Cliffs, NJ (1980), pp 437-445.
2M. P. Seah and C. Lea, Certainty of Measurement Using an Automated Infrared Laser Inspection Instrument for
PCB Solder Joint Integrity, I. Phys. E (Scientific Instruments), 18 (1985), 676.
3 R. J. Klein Wassink, Soldering in Electronics, 2nd Ed., Electrocher:ical Publications Ltd., Ayr, Scottland (1989),
pp 164-166.
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of 133.3 Hz, which corresponds to typical measured readings. The
increased and decreased power inputs were 1.8832 and 1.5408 W,
respectively. In each load case, the duration of the pulse was 30 ms and
the diameter of the laser spot was given as 0.5 mm, centered on the axis
of the cylinder. The power input was assumed to be uniform across the
irradiated spot.

Figure 2. Laser power 2.4-
input for finite- 2.2 Sinusoidal 10% increase
element analysis load 2-
cases.

1.8- N /
1.68j \ ,
1.4-

\ 10% decrease
1.2 Normal pulse
= 1

0.8

0.6

0.4

0.2
0=

0 0.01 0.02 0.03 0.04
Time (s)
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4. Results

Temperature versus time plots for a point in the center of the irradiated
spot are shown in figures 3 and 4. The temperatures show an expected
parabolic rise with time during the heating phase, with a maximum
temperature rise of 66.8°C for the normal pulse. This compares with
information from Vanzetti that the maximum temperature rise is
typically in the neighborhood of 50°C. When the power input stops,
the temperature drops dramatically and then stabilizes to a slow
decline. This is explained by continuation of conduction away from
the irradiated spot until the sample reaches an equalized temperature,
approximately 70 ms after the laser terminates.

Figure 3. Finite- 370
element analysis S p
temperature plots for 360 S
sinusoidal and normal
power pulses. 350

aT 340

Normal pulse
3300.

E
320
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300
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Figure 4. Temperature 380'
plots for increased, 370 Power
decreased, and normal increased
power pulses. 360 10%
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A check of the validity of the total heat transfer is made by applying
the first law of thermodynamics:

Ei., E stored + Eout,, (2)

where Ei is the energy input from the laser, E.,o,, is determined from
the bulk temperature increase, and E., is the loss due to radiation and
natural convection. Equation (2) can then be written as

Pt, = pVC(TB- T) + hA(T- Ta)t 2 + caA(T " - T4)t 2 , (3)

where

P = laser power,
t = time of laser pulse,
p = density of solder,
V = solder volume,
C = specific heat of solder,

TB = bulk temperature after stabilization,
T. = initial temperature,
h = film coefficients on upper and lower surfaces,
A = area of exposed surfaces,
T = average temperatures on upper and lower surfaces,

Ta = ambient temperature,
cr = Stefan-Boltzmann constant, and
t 2 = time to E calculation.

T is an averaged value; the actual surfa,'e temperature varies across
the radius and in time, and an exact calculation of the E, terms would
require integration. However, these terms are negligible compared to
E.,W ed, and the T value is sufficient for an estimation. Inserting values
for the normal power pulse gives the following result:

5.136 x 10- 2 J = 5.1322 x 10- 2 J + 4.003 x 10-- J + 9.457 x 10-7 J.

Energy input Energy stored Convection loss Radiation loss

This shows that the energy transfer is accurate to approximately
0.0058 percent. It also shows that the energy lost due to convection and
radiation is only about 0.08 percent of the total energy and could have
been omitted from the whole analysis.

The infrared emissions versus time plots, shown in figures 5 and 6,
have essentially the same form as the temperature plots. The values
were found using a modification of the Stefan-Boltzmann equation to
account for infrared emissions only:

= fJ (T28 - T 2.8) dA , (4)
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Figure 5. Infrared 3.5-
emission for Sinusoidal pulse
sinusoidal and normal 3
power pulses.
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Figure 6. Infrared 4
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where T is the surface temperature, T is the ambient temperature, and
A is the area of the irradiated spot which is focused by the infrared
detector. It was necessary to integrate over the area because the
temperature varied significantly across the spot. The temperature was
determined as a function of the radius, and was approximated as
linear. The integration led to the following expression for the infrared
emission:

= (.5 xl 10Y jrT4.8 T 3.8 T T2T2.8 +TT.8TY
qir = a TL~TU))r[4.8 3.8 2 T  8  ,

where

TU = temperature at the center of the spot,

TL = temperature at the edge of the spot.

In this expression, values of T and Ti. were inserted at discrete points
in time to give q, = t), which gave the data for figures 5 and 6.
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To compare the separatc load cases, plots of percentage variation in
infrared emissions from the normal power input's emissions were
generated (fig. 7). It is seen that the sinusoidal pulse's emission varies
with the power input during the heating phase, but when the power
is terminated the percentage deviation from normal power quickly
dii.-inislhe3, with 1-percent difference immediately after power cutoff
and 0-percent difference 10 ms later. The 10-percent increased and
decreased power pulses' emissions, on the edter hand, maintain
deviations from the standard pulse of between 10 and 12 percent
throughout the heating aiLd temperature-equalizing phza.se.

To corroborate this last result, a mathematical expression for output
error as a function of input error was derived. Since radiation and
convection heat transfer are negligible over the temperature and time
ranges considered, a conduction equation of the following form could
be used to determine the temperature in time caused by a heat input:4

K =t 2Ierfjz ierfc[(Z+ a 2 7/2] + Ti. (6)

For our purposes equation (6) can be simplified to

T = q1,f(t) + T, (7)

where

T = temperature at any given time,
q,. = laser input power,

f(t) = some function of time, and
Tj = initial temperature.

Figure 7. Percentage 14-

difference in infrared 12
emissions from 10 increase- in po- er
rormal power p,,lse. 8 10% increase in power

6 inusoidal pulse
4-

" 0
S-2-

-4
-6
-8, 10% decrease in power

-10 .

-12

0 0.02 0.04 0.06

Time (s)
4H. S. Carslaw and ]. C. Jaegar, Conduction of Heat in Solids, 2nd Ed., Oxford University Press, London (1959),
22.
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Then for specific power inputs

T1 = (qi.) 1f() 4 T, (8)

T2 = (qin) 2f(t) + Ti. (9)

Letting (qi,) 2 = (1 + x)(qn),, an (x x 100)-percent increase in power, all
else being equal, dividing the second equation by the first, and solving
for T gives

T2= (1 + x)T 1 -(x)T. (10)

The percentage difference in IR emissions is found by applying the
modified Stefan-Boltzmann equation:

accA (Ti 8 T 2 "8) - ecA (T 28 Ta) 2 "8

%Aqir= -- 100 %. 011)ea- Ta8

Inserting the T2 =f(T) relation gives

%Aqi = [(1 + x)T1 - xTi]2 8 T 2.8T2.8 _ a.

Predictions of errors caused by 10-, 20-, and 30-percent deviations in
input power were found by setting T. = Ta = 298 K, and allowing T, to
vary from 298+ K to 370 K; these predictions are given in table 1. It is
seen that the prediction of error due to a 10-percent power input
deviation agrees closely with that from the finite-element analysis.
Care must be taken in using equation (12), however, which requires
that convection and radiation terms have a negligible effect.

Table 1. Errorprbeictonsof I Deviation in Range of error inemissions power input (%) IR emission (%)

0 10 to 12.2
20 20 to 24.8
30 30 to 37.9
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5. Conclusions

The results of primary interest in this study are the percentage devia-
tion of infrared emissions from the standard pulse (fig. 7 and table 1).
It is seen that 20-percent modulation about an average power will
have negligible effect on the readings of the machine (less than 1-
percent error), as long as the readings are taken after the laser is turned
off. If readings are taken while the laser is on, errors in infrared
emissions can be expected to be as high as the peak percentage input
error. Also, power fluctuations that cause a net increase or decrease in
power input will propagate errors in infrared emissions slightly larger
than the percentage input error, with 10-percent deviations in input
power leading to between 10- and 12-percent errors in infrared
emissions.

Finally, the results obtained here are based on a simple model with
theoretical fluctuations in input power, and are presented only to
show trends. To identify possible errors in readings of a given ma-
chine, the statistical error of the machine's laser should be determined
and used, and the specific sample being evaluated should be modeled
more accurately.
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